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For many tasks in speech signal processing it is of interest to develop an objective measure that
correlates well with the perceptual distance between speech segSg@sch segments are defined

as pieces of a speech signal of duration 50—-150 ms. For concreteness, a segment is considered to
mean a diphone, i.e., a segment from the midpoint of one phoneme to the midpoint of the adjacent
phoneme. Such a distance metric would be useful for speech coding at low bit rates. Saving bits in
those systems relies on a perceptual tolerance to acoustic perturbations from the original speech—
perturbations whose effects typically last for several tens of milliseconds. Such a distance metric
would also be useful for automatic speech recognition on the assumption that perceptual invariance
to adverse signal conditiorg.g., noise, microphone, and channel distortions, room reverberation,
etc) and to phonemic variabilityfdue to nonuniqueness of articulatory gesturnsay provide a basis

for robust performance. In this paper, attempts at defining such a metric will be described. The
approach in addressing this question is twofold. First psychoacoustical experiments relevant to the
perception of speech are conducted to measure the relative importance of various time-frequency
“tiles” (one at a timgwhen all other time-frequency information is preseftie psychophysical

data are then used to derive rules for integrating the output of a model of auditory-nerve activity
over time and frequency. @997 Acoustical Society of Amerid&0001-4967)03901-5

PACS numbers: 43.72.Ar, 43.71.An, 43.71.Cq, 43.64.E5

INTRODUCTION etc); or (b) measurement of the just-noticeable difference
(jnd) of some steady-state propefs.g., jnd for amplitude or
This paper is concerned with the derivation of a quanti-frequency of a tone, jnd for formant frequencies or pitch,
tative measure of the perceptual distance betweer_l speeghc). Speech, however, is a highly nonstationary signal. For
segments, where by “speech segment” we mean a piece of §qcessing speech signals, this nonstationarity is dealt with
speech signal of duration 50-150 ms—in particular, & diy,y, hartitioning the signal into contiguous “framesfi.e.,
phone, i.e., a segment from the midpoint of one phoneme 1@y oyt time windows of about 20- to 30-ms durafiowithin
the midpoint of the adjacent phoneme. In deriving such g,.h frame the signal may be regarded as stationary. How-
measure, we V\."" present a m_o_del of hO_W the auditory SySten%ver, from frame to frame there is considerable nonstation-
integrates auditory nerve activity over time and frequency. Aarity. It is not clear how masking properties, jnds, etc.,

measure of the perceptual dlstance_ would b.e OT Interest n It<§hange due to this nonstationarity. Therefore the traditional
own right. It would also have practical applications. For m'tstudies cited above are of limited application to problems

stance, the influence of perturbations introduced by low bi . . .
. . such as speech coding at low bit rates and automatic speech
rate coders may extend, in general, over segment length in-

tervals. The design and evaluation of such coders Shoulaecogmtlon. Not surprisingly, almost all progress in these

therefore benefit from the derivation of a perceptual distanc& 35 has come from application of signal processing tech-

of the type considered here. Also, we believe that such Jiaues, with little help from psychophysics.

perceptual distance would provide a robust measure for au- This paper is almfedhat improving this situation. In con-
tomatic speech recognition. This belief is based on the follf@St to experiments of the type mentioned above, our experi-

lowing reasoning. Human beings perform far better than any€nt involves “segment level” properties, i.e., properties of

existing automatic speech recognizer, especially when thEe¢ Whole segment rather than those of individual frames.
speech signal has been degraded due to variations in ttfePr concreteness we will consider diphones, although longer
transmission path, the presence of noise, articulatory chang&§gments could be studied by similar methods. Our experi-
induced by the noiséi.e., the Lombard effett etc. There- Ment is aimed at quantifying the relative importance of vari-
fore, use of a distance measure based on perceptual dissindus time-frequency regiorisvhich we call “tiles” ) for the
larity may be expected to improve automatic speech recoglerception of a given segment. To achieve this, we study the
nition. perceptual effects of modifying a selected tilnile at the

We approach the derivation of such a measure of dissame time leaving the information in all other time-
tance in two main steps. First of all we conduct a psychoafrequency regions unchangedThis experiment, which we
coustical experiment relevant to the perception of speech. Iall the “tiling” experiment is described in the next sectibn.
traditional psychophysical experiments speech is rarely used The second important step of our approach isitau-
as a test stimulus. Typically these experiments are concerndate the tiling experiment. The simulation depends upon a
with (a) masking of steady-state signals by other steady-statdefinition of distance between observation vectors based on
signals (e.g., masking of tones by noise, noise by a tonethe ensemble interval histografiEIH). As discussed in
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(Ghitza, 1994, the EIH is a functional model of how
auditory-nerve firings are analyzed in the auditory periphery.
The desired distance measure is derived by driving the per-
formance of the simulated tiling experiment to mimic that of
the human subjects.

The detailed description of these procedures given in the 2500
next few sections may be summarized as follows: The psy-
chophysical paradigm used is the diagnostic rhyme test
(DRT). The word pairs in the DRT are modified by inter- 1000
changing judiciously selected time-frequency regi¢ties).

This modified database is used in the standard DRT, and the
error patterns induced by these changes are recorded. The 00
same DRT is then simulated by an array of speech recogniz-

ers. These recognizers use a parametrized distance betwegg. 1. configuration of the six time-frequency tiles chosen for the tiling
EIH vector sequences derived from the speech waveformexperiment.

The parameters of the distance metric are jointly optimized

over relevant tiling conditions so as to mimic the error pat-

4000

tr tmid t

of the individual speakers. As for the psychophysical proce-
r&ure, a one-interval two-alternative forced-choice paradigm
is used. A word pair is selected at random and displayed as
ext on a screen. One of the words in the pakelected at

then defines the desired perceptual distance mefXote
that such an optimization can be performed with any choic

of observation vectors. We chose EIH on the assumption th%ndom is next presented aurally, and the subject is required

the optimized parameters wil havg relevance to huma_% indicate which of the two words was heard. The procedure
speech perception because, as mentioned above, the EIH Iﬁ‘\’s""repeated until all the words in the database have been
functional model of the auditory periphe(@hitza, 1994.

presented. The errors made by the subjects are recorded.
For the tiling experiment the DRT was conducted on
several distorted versions of Voiers’ standard database. The
The experiment used in our search for the perceptuadetails of the signal processing involved in creating those
distance is what we call the “tiling” experiment. It has been distortions may be found in Ghitzd9934a. Briefly, we di-
described in a recent publicatig@hitza, 1993g so we will  vided the time-frequency plane into nonoverlapping regions
give only a brief description of it here. In this experiment we called “tiles” that cover the target diphone in each pair of
measured the relative importance of various time-frequencyords in the DRT. Ideally, one should use many small tiles,
“tiles” by studying the perceptual effects of modifying these but the experiments become increasingly time consuming
tiles one at a time, or by simultaneously modifying variousand expensive with increasing number of tiles. From consid-
combinations of these tiles. It is important to note that whererations of feasibility, we decided to use six tiles with the
a particular tile(or a combination of tilesis modified, the  configuration shown in Fig. 1. The six regions were chosen
information in the rest of the time-frequency plane is lefton the basis of the following rough reasoning: On the time
unaltered. In this way we measure the perceptual importancaxis a break at the boundary between the C and V portions of
of that tile (or combination in the presence of all other time- the target diphone is an obvious choice. This boundary as
frequency information. well as the midpoints of the C and the V were hand labeled
For the psychophysical paradigm we have chosen they a trained phoneticiaisee Ghitza, 1993a0On the fre-
DRT, which was first suggested by Voidd983, and which  quency axis two breaks were selected. A break at 1 kHz is
has been in extensive use for evaluating speech coders. In teaggested by the known change in the properties of nerve
DRT, Voiers uses 96 pairs of confusable words spoken byirings at approximately this frequendge.g., loss of syn-
several male and female speakers. All the words are of thehrony beyond 1 kHz A break at 2.5 kHz corresponds
consonant-vowel-consonaf€VvC) type, and the words in roughly to the upper limit of the second formant frequency
each pair differ only in the initial consonant. In an attempt to(Peterson and Barney, 1952Ve will call the resulting fre-
uniformly cover the speech subspace associated with initiajuency regions as band{0—1 kH2, band-2(1-2.5 kH3,
diphones, the DRT database was designed such that the tand band-32.5—-4 kH32.
get diphones are equally distributed among six phonemic Each distorted database was generated by interchanging
distinctive feature16 word pairs per featuyeand among a particular tile(or a combination of tilesbetween the target
eight vowels. The feature classification follows the binarydiphones of each of the 96 pairs of words in the database.
system suggested by Jakobseiral. (19522 and the target Such an interchange is illustrated in Fig. 2, in which the tile
consonants in each pair differ in the presence or absence e€lected is the consonant part of the target diphone between
one of these dimensions. An explanation of these attributed, and 2.5 kHz. In a similar manner, a total of 14 distorted
as well as the complete list of words, may be found in Ghitzaversions of the database were created. As described in Ghitza
(1993a. (19933, special care was taken to minimize artifacts in the
The database is used in a very carefully controlled psyspeech signals due to the interchange operation.
chophysical procedure. The listeners are well trained and A DRT test was performed on the original database as
quite familiar with the database, including the voice qualitywell as on each of these distorted versions. The error for each

I. PSYCHOPHYSICS
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word pair, for each of these distortion conditions was re- g ,
corded for each of three speakers and each of eight listeners. B
As described in Ghitz419934, these experiments demon-
strated that perceptually, the interchange of the entire di- ~ 500
phone in each band is far more dominant than the inter- super ) = ]
change of the consonant part or the vowel part alone. ?g:g critical 0C/ Sy g
Therefore, to derive the parameters of the perceptual distanceoctave) | P24 e
we used only the original, undistorted database and the dis- — 250
o %

torted versions corresponding to the interchange of the entire
diphone in band-1, band-2, and band-3, respectively.

. These error patterns gonstltgte the_ psychophysmal datlé‘G. 3. A schematic diagram describing the parameters used in the percep-
Wh|Chlwe would like to m'_m|C W'th a S'mUIated.DRT test. al distance metric. The matrict: andM, capture the intuitive notion of
The simulated DRT described in the next section uses thdateral interaction” between neighboring critical bands. Th&'s weight
same speech waveforms as were used in the psychophysié%ﬁ vec:or r(]Jiistance r;ear the tra?sitiog poir;]t molre'hegvily than vecftor: dis-
test. The optimization procedure used to drive the error patances further away from it. Th8 s reflect the relative importance of the

. ith superband, in the presence of normal activity in all other superbands, and
terns of the simulated test toward those of the human subye subject to the constraiat_,gi=1.

jects is discussed in Sec. lll.

time —»

from the training database by hand segmentation. If more
data were available for training, more accurate word models
The method of simulating the DRT has been describeatould be derived. We believe, however, that by restricting
in Ghitza(1993h, and the reader is referred to that article for our experiment to a speaker-dependent mode we reduce
details. Recall that the DRT is a one-interval, two-alternativeacoustic variability, so that word models derived from just
forced-choice experiment. At each stage the subject knowsne repetition are accurate enough.
which pair of words has been selected and that one of them The errors made in this simulation are entirely governed
will be presented at random. The subject must make a decby the definition of distance between the test diphone and the
sion and indicate which word was heard. We therefore posmodel diphone. The parametric form chosen for this distance
tulate that for each of these binary decisions, the subject i therefore of crucial importance for the successful deriva-
able to retrieve from memory a recognizer optimized for thattion of the perceptual metric. Let us discuss briefly the pa-
pair of words. rametrization that we have chosen, and some of the consid-
In view of this postulate, waimulate the DRT by re-  erations which led us to this choice. For this discussion, it
placing the human subject by an array of recognizeng for  will be helpful to refer to Fig. 3.
each pair of words in the databasd@he particular type of We begin by defining a diphone as a sequence of feature
speech recognizer that we use in the simulation has also beeectors—one for each frame of the speech signal—roughly
described in a recent articl&hitza and Sondhi, 1993so0 100 frames per second. Our choice of feature vector is a
we will not describe it in detail here. Suffice it to mention 24-dimensional EIH vector, with the histogram bins allo-
that the recognizers utilize hidden Markov models witm-  cated on the ERB scaléERB stands for equivalent rectan-
stationary states, where each state is a template of a digular bandwidth, which is the bandwidth of a hypothetical
phone. When used in the DRT, each recognizer in the arragectangular filter that approximates the critical band of the
reduces to a binary recognizer for a pair of initial diphoneshuman auditory filters. See detailed definition in Ghitza,
since the second diphone of the CVC is identical for the twol994) As mentioned earlier, the EIH is a functional model
words in each pait.Thus correct recognition occurs if and of how auditory-nerve firings are analyzed in the auditory
only if the initial diphone of the test utterance is closer to theperiphery(Ghitza, 1994.
initial diphone of the correct word model than to the initial Let x,, k=1,2,...K be the EIH vectors of some given
diphone of the other word model of the pair. The word mod-test sequenc. We need to define the distanceXffrom a
els were derived as follows: Every speaker in the DRT datatemplate (or stat¢ sequenceS with EIH vectors s,,
base provides two repetitions of each word. We assign one af=1,2,...N. The lengthN of the template sequence is in
these repetitions to be the “training” database and the othegeneral, different for different templates. The lengttof the
to be the test database. The set of word models is obtainadst sequence is arbitrary within some broad range of values.

II. SIMULATION
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Note that each component of the EIH vector functionally  With vector distance defined as in E¢8) and(3), the
represents the activity in a local region of the frequencymatricesm!, may be regarded as the submatrices ofxat4
spectrum(roughly a critical bangl We postulate that these block diagonal matriXM,,, in which each block has dimen-
components are processed in groups-saperbands—to  sion 6x6. The entries in the matricéd,,, n=1,2,...N, are
arrive at a distance within each group, and then the indipart of the set of parameters to be determined by optimiza-
vidual distances are combined to give the overall distancgon as discussed in the next section. We have allowed the
between the EIH vector sequenceésandS. In the auditory  matricesM,, here to depend arbitrarily on the time indexf
periphery, presumably, there is a continuum of overlappinghe template. With this generality, however, the number of
superbands covering the frequency spectrum. In our funcparameters to be optimized becomes too large. We therefore
tional model we replace this continuum by four nonoverlap-restrictM,, to two possibilitiesM ,=M_ if the indexn is in

ping superbands—roughly one octave wide. Each superbange consonant portion of the template, angd=M if it is in
consists of six ERB bins of the whole EIH vector. the vowel portion. If the matricesi, are chosen to be diag-
~In order to define a distance betwe¥nandS we first o) then they serve to specify the relative importance of
time align the two sequences by warpikgonto S. For this  itferent components of the EIH vectéor, essentially, dif-

we use the usual dynamic time waipTW) algorithm, ferent critical bands With a more general structure, they can

1 N capture the intuitive notion of “lateral interaction.” That is,
A2(S,X)=—min D, d2(Sy , Xk(n)) (1)  the notion that the output of a channel might be influenced
k(n) n=1 by the activity in neighboring channels. In our study we
wherek(n) is the time warp{with k(1)=1 andk(N)=K], ~ chose them, matrices to be tridiagonal.
andd is the Euclidean distance betwegnandx,, . LetX,, The 4}, are introduced because we believe that the vec-

n=1,2,...N, be the EIH vectors oK after this alignment. tors near the transition point are more important for recog-
We next define the distance between individual veciors Nizing the diphone than vectors further away from it. With
ands,. Let ¢, andX, be theith subvectors of, andX,, thisin mind, we specify the functio}, with just two param-
respectively, representing thién superband.Let m}, be a  etersg'=(oc,0v). These are the variances of two Gaussian
6x6 matrix defined for théth superband, for the time index curves with peaks at the transition point—one for the conso-
n of the template sequenc Define§, andX!, as the unit nant part and one for the vowel pat§ee Fig. 3.

length vectors In principle, the set of parameters that define the dis-
tanceD in Eq. (5) (e.g., the matrice$/c and M, and the

Q= My Xy (23 parameterss and 8') should be allowed to be different for
"X different diphones. This is again not feasible because of the
, number of parameters involved. Note that the total number
A m, ob of diphones is on the order of 2000 in English. In the DRT
SJ’”_||m'nsi]|| ’ (2b) database alone, the number of diphones is 192. Unique ma-

_ trices for each diphone would require an enormous number
wherel|-|| denotes the Euclidean norm, or length, of a vector ot parameters. We therefore restrict the number of param-
We next define the distance between the subveslpands,  oters by using the same sets for diphones with “similar”
by the relation properties. At present we group together consonants into

d(s, %) =g —%. 3) seven catt_agones accord_mgrtmnner of a_rt|culat|_on(_v0|ced
and unvoiced stop, voiced and unvoiced fricative, nasal,
With this definition of distance between vectors, the distancgjlide, and affricate The vowels are grouped into four cat-
between the sequences within a superbaicandS is de-  egories according to the location of the constrictidow

fined as back, high back, low front, and high fronfThis gives us 28
LN classes of diphones, and we assign a parameter set to each
DS Xi)= = d2(d X, 4 such class.
(5X0=y nzl Pl (S %) @ In summary, the distance of a test segmgnfrom a

diphone templaté& is derived as follows: Depending on the
templateS, choose the appropriate parameter iget, My,
o, and 8. Then compute the distance according to Egs.
(1)—(5). For a given specification of all the parameters, the
definition of D gives us a parametrized distance which de-
pends on the templater statg. The entire set of parameters
4 o is optimized to best mimic human performance as described
D%(SX)=2, B'D*S,X), (5 in the next section.
=t Finally, let us note that the parametrization described
whereD?(S X") is as defined in Eq4), and theg are sub- above is not necessarily optimal. Indeed we believe it can be
ject to the constrainE?_,8'=1. TheB"s reflect the relative improved in several ways. Allowing a greater range of
importance of theéth superband, in the presence of normalchoices for the matricelsl c andM,, as well as allowing the
activity in all other superband$See Fig. 3. submatricesn!, to be full matrices(rather than tridiagonal

Here,d(s,X!) is weighted by the factoy), depending upon
position along the template sequence.

In general, the distand® between the EIH sequencgs
andX can be any function of thB?(S ,X')’s. For the present
we assume that they are linearly combined. Thus
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iteratively adjust the parametessin order to minimizeC.

Pattoms "] pattems The program we use is a variant of Newton’s metiiGay,
Model M| e e Psychophysics 1983 '
To complete the description of our optimization proce-
Egrceptal Cognition dure, let us now indicate the definition of the cost funci@n
Measure ~T~~____| (112AFC) The data we are attempting to mimic are the responses of
E,H‘r Yinternal each of eight listeners to presentations of each of the words
Sequences Representation in the database spoken by each of three speakers, and dis-
- A'-:mz:y torted by_ ef_;lch_of( tiling conditions.(As_ mentioned in Sec.
Periphery II, for optimization we chose only the distortions correspond-
[} [} ing to the interchange of the entire diphone in band-1,
' I ' band-2, and band-3, respectively. This gi¥es3.) To give
DRT Database a concise definition fo€ it is convenient to define a set of
(original & distorted versions) indices.
Let:

FIG. 4. A schematic diagram describing the optimization procedure. The p denote the WOI’CDaiI’ in the databasél$p$96),

parameters of the perceptual distance measure are iteratively adjusted to . ST
match the error patterns produced by the machine to those of the human w denote theword within a palr(l\W\Z),

subjects, jointly over several tiling conditions. In the box marked “cogni- k denote the tiling condition (&k=<K), with O for the
tion,” the abbreviation 112AFC stands for the “one-interval two-alternative undistorted database,
forced-choice™ paradigm. s denote thespeaker(1<s<3),

| denote thdistener(1<I<8).
are obvious possible improvements in the definition of thelet X, denote the speech signal corresponding to a chosen
vector distancel. A more promising improvement is a gen- set of indices. Then the human response is a binary number,
eralization of the form of the segment distanPein the  h(Xskpw, for each selection of the indicess,k,p,w in the
following manner: Letv® be the (24)-dimensional vector range given above for each index. Thathids 0 if listener!
obtained by concatenating thé¢ vectorss, in the template  identifiedXs,, correctly, and 1 otherwise. For a given set of
sequence. Similarly 1&¢% be the test sequence after warping parametersg, let m(Xs,,,,6) denote the machine’s response.

on to the template sequence with a mappiksgk(n). Then With these definitions, the cost function that we mini-
we can define the distance betwe®andX to be given by ~ Mize is defined &s
D2(S,X)=min V' ®VX (6) 3 K 9% 2 8 2
. C=2 2 2 2 2 [N(Xskpw ~MXskpm: )%
where® is a positive definite matrix antl denotes matrix 7)

transpose. Herd® can be regarded as a block matrix w3
blocks, each block being a 224 matrix. Then th® of Eq.
(5) is a special case of tH2 of Eq. (6) in which® is a block
diagonal matrix. With a full matrix®, we again have the

problem of a large number of parameters to be estimated. A g?;b:tazz g]rgonuunr;k?;d;tioiﬁg for ;2;?;;2'2;2026 Itr)leour
a first step, therefore, we might just generalize to a blockt P 9

tridiagonal matrix ween 36 and 165; the number of tokens per vowel category
’ was 144.

The optimal solution@ represents the parameters of the
perceptual distance which provide the best mimic, jointly
over all K tiling conditions. The accuracy of depends

IIl. OPTIMIZATION IV. RESULTS

A schematic description of the optimization procedure is In terms of evaluating the validity of our approach, two
shown in Fig. 4. The right-hand side depicts the psycho-questions come to mind. First, how closely can the machine
physical data collected in the tiling experiment. The left-error patterns be made to match human error patterns? And
hand side shows the outputs of the simulated tiling experisecond, how does the performance of the ‘“optimal”
ment. The parameters of the simulation are iterativelymetric—derived by optimizing on “tiling” type of
adjusted to best mimic the psychophysical data. distortions—generalize to other kinds of distortions?

Let @ denote the parameter set which goes into the defi-  Figures %a)—(d) and Ga)—(d) present results in an at-
nition of D in Eq. (5), i.e., theM¢’s, My’s, ¢’s and 8’s.  tempt to answer the first question. In all these figures we
These are the adjustable parameters. In addition we have tipeesent error patterns by plotting the error rates for each of
template sequenceS;, j=1,192—one for each initial di- the Jakobson—Fant-Halle dimensiSriBor each of these di-
phone in the(undistorted training database. These are keptmensions we plot two error ratésAt the abscissa marked
fixed throughout the optimization procedure. For a given set +” we plot the error rates for the subset of words in which
of values for the parametes (and the fixed templatesve  the attribute is present, and at the abscissa marked we
define a cost functiorC which quantifies how badly the plot the error rates for the words in which the attribute is
simulation performs when compared to the psychophysicahbsent. In the top panel of every figure the error rates for
data. OnceC is defined, we use an optimization program to human subjectgsolid line) are compared to those for the
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FIG. 5. Optimizing on undistorted database alohap panelsMean human

(solid line) and machingdashed ling performance on the DRT database.
The mean human performance is derived across three speakers and eight
subjects. The abscissa of every plot indicates the six phonemic categories:

“vc” is for voicing, “ ns” for nasality, “st” for sustention, “sb” for sibi- database. For this test we Optimized the parameters of the
lation, “gv” for graveness and tm” for compactness”. The “+” sign . . . . L o
stands for attribute present and the-* sign for attribute absent. The or- _d'Ste'mce metricg, on just the t'“_ng condition 0. As it is seen
dinate represents the number of words in the category that, when played i Fig. 5a), the model can mimic the performance of the
the listener, were judged to be the opposite word in the word(pait the  human subjects quite well—the difference between machine
listener “switched” to the opposite categoryThe switch is represented as and human performand@ottom panel is within one stan-
a percentagérelative to 16 which is the total number of words per phone- L P . p_ .
mic category. Bottom panels:Difference between mean human perfor- dard deviation for all the dlmensmns. HO\{VQVGI‘, this mOd(?l
mance and the machine performaridashed ling compared to the human (whose parameters were derived by optimizing on the undis-
standard deviatioisolid lineg. The plots are for the original databas® torted database alonfails to mimic human performance for
and for the three tiled versions obtained by interchanging bands 1, 2, and - . .
of the entire diphoné(b), (0), and(d), respectively. 8ther.t|l|ng condm_ons.,.. Figure (6) and (c) shows that the
machine makes significantly more errors than human sub-
jects for the tiling conditions in which band-1 or band-2 is
machine(dashed ling In the bottom panel the dashed line interchanged for the entire diphone. To arrive at a single
shows the error rate for the machine minus the error rate fomodel that is able to mimic human performance under dif-
the human subjects. Also plotted for comparison are twderent tile interchanges? should bejointly optimized over
solid lines representing: one standard deviation of the error several tiling conditions.
rate for human subjects. In Fig. 6(a)—(d) we show the same comparisons as in
We first tested if the model structure is flexible enoughFig. 5a)—(d), except that now the parameters are optimized
for the purpose of mimicking the human performance for ongointly over four tiling conditions: undistorted database and
tiling condition alone—say, the undistorted, original, DRT the tilings in which bands 1, 2, 3, respectively, are inter-

FIG. 6. Same format as in Fig. 5, but for joint optimization.
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TABLE I. Experiment with the DRT database degraded by additive Gausstgjled distribution of these errors along the Jakobson—Fant—
ian white noise. The entries are the errors, summed over all the JakobsorHa”e dimensions. The detailed distributions are shown for
" : . ) . ns. ( :
Fant-Halle dimensions, in percen the human subjects, the EIH with the perceptual distance and
Clean 30 dB 20 dB 10 dB the MEL-CEP with thel, distance. The results for the EIH
with L, distance were omitted in order not to clutter the

Emealrceptual 53 82 133 21 figure. The figure demonstrates that the pattern of error dis-
EIH (L, 18 17 21 27 tribution for the perceptual distance generally follows the
MEL-CEP (L,) 11 16 25 38 pattern for human subjects.

V. DISCUSSION

changed over the entire target diphone. It is seen from Fig. In the preceding sections we have presented a method
6(a) that machine performance on the undistorted database fsr deriving a perception-based measure of distance between
slightly worse than that in Fig.(8), and the machine perfor- speech segments. The segments we chose to investigate are
mance for sustention is more than a standard deviation awadiphones, although longer segments could be studied in a
from human performance. However, in exchange for thissimilar manner.
small deterioration, the performance for the other tiling con-  In our model, the template of a diphone is represented as
ditions is now much closer to human. a high-resolution sequence of EIH vectgome vector every
As for the question of how the optimal metric general-10 mg. This template represents the articulatory gesture
izes, we ran a simulated DRT experiment on the DRT datawhile moving from C to V, in terms of the time course of the
base degraded by additive Gaussian white noise. We usdflH vectors. It may be thought of as the pattern of the di-
three different definitions ofl(-,-) (a) the observation vec- phone that is stored in memory during the early stages of
tors were 13th-order Mel-Cepstru(MEL-CEP) andd was  language acquisition. Note that the template implicitly con-
theL, (i.e., Euclideah distance;(b) the observation vectors tains information about thplace of articulation of the con-
were EIH andd was thel , distance; andc) the observation sonant. An unknown “input” diphone is compared to a tem-
vectors were EIH and the distance metric was the optimizeghlate by first time warping it to the template and then
perceptual metric derived above. Table | shows the resultsomputing a distance between the aligned sequences. This
for those three DRT simulations and for the human subjectglistance is expressed in terms of a set of paramétarisich
as a function of SNR. The entries are the errors, summedre allowed to depend upon the template. These parameters
over all the Jakobson—Fant—Halle dimensions, in percenguantify the perceptual deviation from the diphone template.
From Table | we conclude that although the machine perforin order to keep the number of parameters manageable, we
mance using EIH with perceptual metric does not match hugroup the consonants into seven groups and the vowels into
man performance, it is superior to the performance usindour groups, and assign the same parameters to the conso-
EIH with L, metric (and also to the performance with,  nants and vowels within the same group. For consonants, we
norm between MEL-CEP vectorsFigure 7 shows the de- postulate that the parameters depend uponnth@ner of
production(voiced and unvoiced stop, voiced and unvoiced
fricative, nasal, glide, and affricateThevowelsare grouped

Clean SNR=30dB according to the location of the constrictidnont high, front
o7 B T S A low, back high, back loy In this way all C—V diphones are
0[S0~ U i Distonce ) R SIS S A grouped into 28 different classes. Note that this grouping is
g0l Doted ~ MEL-CER (12) 0N IO SO SO SN SR only for the parametersf (that weight different time-

frequency regions according to their relative perceptual im-
portancé. The templates themselves are not groupaitte
ONEANS - also that two diphones, sabd/ and Ha/, whose consonants
A belong to the samenanner class are assigned the sare

+ -+ -+ - + -+ - + - + +
ve s st s gvoom ve ms stsbogvom The information about their different places of articulation is
100 SNR=2008 100 SNR=1008 implicitly contained in the templates of the two diphones.

In deciding upon a structure for the distance we postu-
late that the auditory periphery processes the input in parallel
frequency ‘“superbands’{about an octave wideand pro-
duces a distance in each such band. In our functional model
we take four contiguous superbands, although in the auditory

; LT TN periphery there is presumably a continuum of overlapping
Yo e TeT e v o e The TaT b v Tom bands. The distances from all superbands can be combined in
many ways, providing the overall distance between the di-
FIG. 7. Mean human performangsolid line), machine performance with phones. Here, we combine them linearly.
the perceptual distandglashed ling and machine performance with 13th Throughout this study, we used the Jakobson-Fant—
order Mel-Cepstrum antl, distance{(dotted ling for the DRT database in )6 feature space. These dimensions were used by Voiers
the presence of additive Gaussian white noise. The axes are as described in
Fig. 5, for various SNR(a) Clean speech() SNR=30 dB, (c) SNR=20 (O structure the DRT database, and we present our results
dB, (d) SNR=10 dB. along the same dimensions. It is worth noting, however, that
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our aim is to derive a distance metric that is completely thenC would be a discontinuous function af which could be difficult to
independent of the distinctive feature set. For this rea@bn, optimize. We therefore make(xgy,., 6) & real number between 0 and 1,

L . - : whose value depends upon the distanceg.gf,, from the two templates
was computed by optimizing the cost function defined in Eq. for the pair of word9. If d.,, andd,, are the distances from the correct and

.(7)._ 'I_'his cost fun_ction accumulates_, the contributions (_)f theincorrect templates, respectively, then we  ChOOSB(Xeipu 0)
individual words in the database without regard to their dis- =[1+arctana(d;,.—d.,)}/2. The exact value of is not very critical. The
tinctive features. However, the exact pairwise comparisongmportant property is that ifl.o>di,c thenm goes to 0 and it <din, then

. . . it goes to 1.
made will have some influence on the values of the Optlma‘*The errors could be presented in other ways, e.g., along place-manner di-

parameters. mensions, or in the form of a confusion matrix. Note, however, that a
The most important, and we believe novel, aspect of ourconfusion matrix format is inappropriate here because the psychophysical
work is the fact that we derive the distance measure on thdaradigm is a two-alternative forced-choice, and also because many binary

basis of tual dissimilaritv. We do that b imicki comparisons are missing in the database. As to the choice of distinctive
asis ofperceptual dissimilarity. e do that by mimicking features, we chose the Jakobson—Fant—Halle dimensions because

human performance in the DRT framework, using tiling type voiers’ DRT database is organized along those dimensions (@de-
of distortions. In this restricted task, at least, the metric per-cause those dimensions reflect acoustic properties in time and frequency

forms significantly better than others that we have tried. ,(Jakobsoret al. 195. o .
Note that here, we use the notion of “error rate” in the context of DRT,

As afinal note, we speculate that the perceptual distancge. 5 pinary decision paradigm: an occurrence of an error means that the
derived here may be used to define a jnd for diphof@es listener “switched” to the opposite category.
phonemeks This jnd may be defined as a change for which®t may be argued that the articulatory gestures are quite similar for C—V

the perceptual distance attains a threshold value. diphones |n_wh|ch the vowel is the same and the place of artlculatlon.of the
consonant is the same—e.gnd/ and ba/. However, the corresponding

spectra and EIH vectors are still quite distinct. Hence grouping of the
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We would like to express our thanks to Ben Gold andpruliman, R., Festen, F. M., and Plomp, @994, “Effect of temporal
the anonymous reviewers for many he|pfu| Suggestions to envelope smearing on speech reception,” J. Acoust. Soc.95mn1053—
1064

improve the manuscript. Fletcher, H.(1953. Speech and Hearing in Communicati@frieger, Hun-

tington, NY).
As mentioned above, psychophysical experiments dealing with speech peGay, D. M. (1983. “Algorithm 611—Subroutines for unconstrained mini-
ception are rare. Some experiments reported in the literature that have somemization using a model/trust-region approach,” ACM Trans. Math. Soft-
relevance to the present paper are those of Flet¢t@$3, Miller and ware9, 503-524.
Nicely (1955, Houtgast and Steenekét985, and Drullmaret al. (1994. Ghitza, 0.(1994. “Auditory models and human performance in tasks re-
In Fletcher's experimentgFletcher, 1958 subjects had to respond to lated to speech recognition and speech coding,” IEEE Trans. Speech Au-
stimuli that contained only parts of the speech sigfeay., low-pass or dio 2(1), 115-132.
high-pass filtered speechMiller and Nicely (1959 studied the effect of  Ghitza, 0.(19933. “Processing of spoken CVCs in the auditory periphery.
filtering and additive noise on the confusion matrices for various phonemes. I. Psychophysics,” J. Acoust. Soc. Ar@4, 2507-2516.
The experiments of Houtgast and Steenek®®85 and Drullmanet al. Ghitza, 0.(1993h. “Adequacy of auditory models to predict internal hu-
(1999 are concerned with the effects of filtering the speech envelope in man representation of speech sounds.” J. Acoust. Soc. $8n2160—
contiguous frequency bands. Our experiments differ from all these in that 2171.
we study the effects of modifying selected time-frequency regions of aGhitza, O., and Sondhi, M. M1993. “Hidden Markov Models with Tem-

speech signal while leaving the rest of the signal unchanged. plates as Nonsationary States: An Application to Speech Recognition,”
2The six Jakobson—Fant—Halle dimensions\aieing, nasality, sustention, Comput. Speech Lang@(2), 101-119.

sibilation, gravenessandcompactnessThe voicing (vc) feature character-  Houtgast, T., and Steeneken, H. J. (1985. “A review of the MTF con-

izes the nature of the source, being periodic or nonperiodic. nEsality cept in room acoustics and its use for estimating speech intelligibility,” J.

(ns) feature indicates the existence of a parallel resonator representing theAcoust. Soc. Am77, 1069—-1077.
nasal cavity. The termsustentiorn(st) andsibilation (sb) are due to Voiers.  Jakobson, R., Fant, C. G. M., and Halle, ¥L952. “Preliminaries to
They correspond, respectively, to the continuant-interrupted and strident- speech analysis: the distinctive features and their correlates,” Technical

mellow contrasts of Jakobsoet al. (1952. Finally graveness(gv) and Report No. 13, Acoustic Laboratory, Massachusetts Institute of Technol-
compactnesgcm) represent broad resonance features of the speech sound,ogy, Cambridge, MA.
related to place of articulation. Miller, G. A., and Nicely, P. E(1955. “An analysis of perceptual confu-

3We are assuming that the effects of coarticulation due to the initial conso- sions among some English consonants,” J. Acoust. Soc. 2in338—
nant do not extend beyond the midpoint of the vowel. This appears to be an 352.

accurate assumption, at least for the DRT database. Peterson, G. E., and Barney, H.(1952. “Control methods used in a study
“Throughout the paper we used subscripts to indicate time index of a tem- of the vowels,” J. Acoust. Soc. An24, 175—184.
plate, and superscripts to indicate superbands. Voiers, W. D.(1983. “Evaluating processed speech using the Diagnostic

5If min Eq.(7) is chosen to be a binary number, like the human responses, Rhyme Test,” Speech Techndl(4), 30—39.

529  J. Acoust. Soc. Am., Vol. 101, No. 1, January 1997 O. Ghitza and M. M. Sondhi: Distance between speech segments 529



