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For many tasks in speech signal processing it is of interest to develop an objective measure that
correlates well with the perceptual distance between speech segments.~Speech segments are defined
as pieces of a speech signal of duration 50–150 ms. For concreteness, a segment is considered to
mean a diphone, i.e., a segment from the midpoint of one phoneme to the midpoint of the adjacent
phoneme.! Such a distance metric would be useful for speech coding at low bit rates. Saving bits in
those systems relies on a perceptual tolerance to acoustic perturbations from the original speech—
perturbations whose effects typically last for several tens of milliseconds. Such a distance metric
would also be useful for automatic speech recognition on the assumption that perceptual invariance
to adverse signal conditions~e.g., noise, microphone, and channel distortions, room reverberation,
etc.! and to phonemic variability~due to nonuniqueness of articulatory gestures! may provide a basis
for robust performance. In this paper, attempts at defining such a metric will be described. The
approach in addressing this question is twofold. First psychoacoustical experiments relevant to the
perception of speech are conducted to measure the relative importance of various time-frequency
‘‘tiles’’ ~one at a time! when all other time-frequency information is present. The psychophysical
data are then used to derive rules for integrating the output of a model of auditory-nerve activity
over time and frequency. ©1997 Acoustical Society of America.@S0001-4966~97!03901-5#

PACS numbers: 43.72.Ar, 43.71.An, 43.71.Cq, 43.66.Ba@JS#
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INTRODUCTION

This paper is concerned with the derivation of a quan
tative measure of the perceptual distance between sp
segments, where by ‘‘speech segment’’ we mean a piece
speech signal of duration 50–150 ms—in particular, a
phone, i.e., a segment from the midpoint of one phonem
the midpoint of the adjacent phoneme. In deriving such
measure, we will present a model of how the auditory sys
integrates auditory nerve activity over time and frequency
measure of the perceptual distance would be of interest i
own right. It would also have practical applications. For
stance, the influence of perturbations introduced by low
rate coders may extend, in general, over segment length
tervals. The design and evaluation of such coders sho
therefore benefit from the derivation of a perceptual dista
of the type considered here. Also, we believe that suc
perceptual distance would provide a robust measure for
tomatic speech recognition. This belief is based on the
lowing reasoning. Human beings perform far better than
existing automatic speech recognizer, especially when
speech signal has been degraded due to variations in
transmission path, the presence of noise, articulatory cha
induced by the noise~i.e., the Lombard effect!, etc. There-
fore, use of a distance measure based on perceptual dis
larity may be expected to improve automatic speech rec
nition.

We approach the derivation of such a measure of
tance in two main steps. First of all we conduct a psych
coustical experiment relevant to the perception of speech
traditional psychophysical experiments speech is rarely u
as a test stimulus. Typically these experiments are conce
with ~a! masking of steady-state signals by other steady-s
signals ~e.g., masking of tones by noise, noise by a to
522 J. Acoust. Soc. Am. 101 (1), January 1997 0001-4966/97/10
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etc.!; or ~b! measurement of the just-noticeable differen
~jnd! of some steady-state property~e.g., jnd for amplitude or
frequency of a tone, jnd for formant frequencies or pitc
etc.!. Speech, however, is a highly nonstationary signal.
processing speech signals, this nonstationarity is dealt w
by partitioning the signal into contiguous ‘‘frames’’~i.e.,
short time windows of about 20- to 30-ms duration!. Within
each frame the signal may be regarded as stationary. H
ever, from frame to frame there is considerable nonstati
arity. It is not clear how masking properties, jnds, et
change due to this nonstationarity. Therefore the traditio
studies cited above are of limited application to proble
such as speech coding at low bit rates and automatic sp
recognition. Not surprisingly, almost all progress in the
areas has come from application of signal processing te
niques, with little help from psychophysics.

This paper is aimed at improving this situation. In co
trast to experiments of the type mentioned above, our exp
ment involves ‘‘segment level’’ properties, i.e., properties
the whole segment rather than those of individual fram
For concreteness we will consider diphones, although lon
segments could be studied by similar methods. Our exp
ment is aimed at quantifying the relative importance of va
ous time-frequency regions~which we call ‘‘tiles’’ ! for the
perception of a given segment. To achieve this, we study
perceptual effects of modifying a selected tilewhile at the
same time leaving the information in all other time-
frequency regions unchanged. This experiment, which we
call the ‘‘tiling’’ experiment is described in the next section1

The second important step of our approach is tosimu-
late the tiling experiment. The simulation depends upon
definition of distance between observation vectors based
the ensemble interval histogram~EIH!. As discussed in
5221(1)/522/8/$10.00 © 1997 Acoustical Society of America
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~Ghitza, 1994!, the EIH is a functional model of how
auditory-nerve firings are analyzed in the auditory periphe
The desired distance measure is derived by driving the
formance of the simulated tiling experiment to mimic that
the human subjects.

The detailed description of these procedures given in
next few sections may be summarized as follows: The p
chophysical paradigm used is the diagnostic rhyme
~DRT!. The word pairs in the DRT are modified by inte
changing judiciously selected time-frequency regions~tiles!.
This modified database is used in the standard DRT, and
error patterns induced by these changes are recorded.
same DRT is then simulated by an array of speech recog
ers. These recognizers use a parametrized distance bet
EIH vector sequences derived from the speech wavefo
The parameters of the distance metric are jointly optimiz
over relevant tiling conditions so as to mimic the error p
terns of the human subjects. The optimal set of parame
then defines the desired perceptual distance metric.~Note
that such an optimization can be performed with any cho
of observation vectors. We chose EIH on the assumption
the optimized parameters will have relevance to hum
speech perception because, as mentioned above, the EIH
functional model of the auditory periphery~Ghitza, 1994!.

I. PSYCHOPHYSICS

The experiment used in our search for the percep
distance is what we call the ‘‘tiling’’ experiment. It has bee
described in a recent publication~Ghitza, 1993a!, so we will
give only a brief description of it here. In this experiment w
measured the relative importance of various time-freque
‘‘tiles’’ by studying the perceptual effects of modifying thes
tiles one at a time, or by simultaneously modifying vario
combinations of these tiles. It is important to note that wh
a particular tile~or a combination of tiles! is modified, the
information in the rest of the time-frequency plane is l
unaltered. In this way we measure the perceptual importa
of that tile ~or combination! in the presence of all other time
frequency information.

For the psychophysical paradigm we have chosen
DRT, which was first suggested by Voiers~1983!, and which
has been in extensive use for evaluating speech coders. I
DRT, Voiers uses 96 pairs of confusable words spoken
several male and female speakers. All the words are of
consonant-vowel-consonant~CVC! type, and the words in
each pair differ only in the initial consonant. In an attempt
uniformly cover the speech subspace associated with in
diphones, the DRT database was designed such that the
get diphones are equally distributed among six phone
distinctive features~16 word pairs per feature! and among
eight vowels. The feature classification follows the bina
system suggested by Jakobsonet al. ~1952!2 and the target
consonants in each pair differ in the presence or absenc
one of these dimensions. An explanation of these attribu
as well as the complete list of words, may be found in Ghi
~1993a!.

The database is used in a very carefully controlled p
chophysical procedure. The listeners are well trained
quite familiar with the database, including the voice qual
523 J. Acoust. Soc. Am., Vol. 101, No. 1, January 1997 O. G
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of the individual speakers. As for the psychophysical pro
dure, a one-interval two-alternative forced-choice paradi
is used. A word pair is selected at random and displayed
text on a screen. One of the words in the pair~selected at
random! is next presented aurally, and the subject is requi
to indicate which of the two words was heard. The proced
is repeated until all the words in the database have b
presented. The errors made by the subjects are recorde

For the tiling experiment the DRT was conducted
several distorted versions of Voiers’ standard database.
details of the signal processing involved in creating tho
distortions may be found in Ghitza~1993a!. Briefly, we di-
vided the time-frequency plane into nonoverlapping regio
called ‘‘tiles’’ that cover the target diphone in each pair
words in the DRT. Ideally, one should use many small til
but the experiments become increasingly time consum
and expensive with increasing number of tiles. From cons
erations of feasibility, we decided to use six tiles with t
configuration shown in Fig. 1. The six regions were chos
on the basis of the following rough reasoning: On the tim
axis a break at the boundary between the C and V portion
the target diphone is an obvious choice. This boundary
well as the midpoints of the C and the V were hand labe
by a trained phonetician~see Ghitza, 1993a!. On the fre-
quency axis two breaks were selected. A break at 1 kH
suggested by the known change in the properties of ne
firings at approximately this frequency~e.g., loss of syn-
chrony beyond 1 kHz!. A break at 2.5 kHz correspond
roughly to the upper limit of the second formant frequen
~Peterson and Barney, 1952!. We will call the resulting fre-
quency regions as band-1~0–1 kHz!, band-2~1–2.5 kHz!,
and band-3~2.5–4 kHz!.

Each distorted database was generated by interchan
a particular tile~or a combination of tiles! between the targe
diphones of each of the 96 pairs of words in the databa
Such an interchange is illustrated in Fig. 2, in which the t
selected is the consonant part of the target diphone betw
1 and 2.5 kHz. In a similar manner, a total of 14 distort
versions of the database were created. As described in G
~1993a!, special care was taken to minimize artifacts in t
speech signals due to the interchange operation.

A DRT test was performed on the original database
well as on each of these distorted versions. The error for e

FIG. 1. Configuration of the six time-frequency tiles chosen for the tili
experiment.
523hitza and M. M. Sondhi: Distance between speech segments
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word pair, for each of these distortion conditions was
corded for each of three speakers and each of eight listen
As described in Ghitza~1993a!, these experiments demon
strated that perceptually, the interchange of the entire
phone in each band is far more dominant than the in
change of the consonant part or the vowel part alo
Therefore, to derive the parameters of the perceptual dista
we used only the original, undistorted database and the
torted versions corresponding to the interchange of the en
diphone in band-1, band-2, and band-3, respectively.

These error patterns constitute the psychophysical
which we would like to mimic with a simulated DRT tes
The simulated DRT described in the next section uses
same speech waveforms as were used in the psychophy
test. The optimization procedure used to drive the error p
terns of the simulated test toward those of the human s
jects is discussed in Sec. III.

II. SIMULATION

The method of simulating the DRT has been describ
in Ghitza~1993b!, and the reader is referred to that article f
details. Recall that the DRT is a one-interval, two-alternat
forced-choice experiment. At each stage the subject kn
which pair of words has been selected and that one of th
will be presented at random. The subject must make a d
sion and indicate which word was heard. We therefore p
tulate that for each of these binary decisions, the subjec
able to retrieve from memory a recognizer optimized for t
pair of words.

In view of this postulate, wesimulate the DRT by re-
placing the human subject by an array of recognizers~one for
each pair of words in the database!. The particular type of
speech recognizer that we use in the simulation has also
described in a recent article~Ghitza and Sondhi, 1993!, so
we will not describe it in detail here. Suffice it to mentio
that the recognizers utilize hidden Markov models withnon-
stationary states, where each state is a template of a
phone. When used in the DRT, each recognizer in the a
reduces to a binary recognizer for a pair of initial diphon
since the second diphone of the CVC is identical for the t
words in each pair.3 Thus correct recognition occurs if an
only if the initial diphone of the test utterance is closer to t
initial diphone of the correct word model than to the initi
diphone of the other word model of the pair. The word mo
els were derived as follows: Every speaker in the DRT da
base provides two repetitions of each word. We assign on
these repetitions to be the ‘‘training’’ database and the ot
to be the test database. The set of word models is obta

FIG. 2. Illustrating the interchange of tiles for a pair of words in the DR
database.
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from the training database by hand segmentation. If m
data were available for training, more accurate word mod
could be derived. We believe, however, that by restrict
our experiment to a speaker-dependent mode we red
acoustic variability, so that word models derived from ju
one repetition are accurate enough.

The errors made in this simulation are entirely govern
by the definition of distance between the test diphone and
model diphone. The parametric form chosen for this dista
is therefore of crucial importance for the successful deri
tion of the perceptual metric. Let us discuss briefly the p
rametrization that we have chosen, and some of the con
erations which led us to this choice. For this discussion
will be helpful to refer to Fig. 3.

We begin by defining a diphone as a sequence of fea
vectors—one for each frame of the speech signal—roug
100 frames per second. Our choice of feature vector i
24-dimensional EIH vector, with the histogram bins all
cated on the ERB scale.~ERB stands for equivalent rectan
gular bandwidth, which is the bandwidth of a hypothetic
rectangular filter that approximates the critical band of
human auditory filters. See detailed definition in Ghitz
1994.! As mentioned earlier, the EIH is a functional mod
of how auditory-nerve firings are analyzed in the audito
periphery~Ghitza, 1994!.

Let xk , k51,2,...,K be the EIH vectors of some give
test sequenceX. We need to define the distance ofX from a
template ~or state! sequenceS with EIH vectors sn ,
n51,2,...,N. The lengthN of the template sequence is i
general, different for different templates. The lengthK of the
test sequence is arbitrary within some broad range of val

FIG. 3. A schematic diagram describing the parameters used in the pe
tual distance metric. The matricesMC andMV capture the intuitive notion of
‘‘lateral interaction’’ between neighboring critical bands. Theg n

i ’s weight
the vector distance near the transition point more heavily than vector
tances further away from it. Theb i ’s reflect the relative importance of the
i th superband, in the presence of normal activity in all other superbands
are subject to the constraint( i51

4 b i51.
524hitza and M. M. Sondhi: Distance between speech segments
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Note that each component of the EIH vector functiona
represents the activity in a local region of the frequen
spectrum~roughly a critical band!. We postulate that thes
components are processed in groups—orsuperbands—to
arrive at a distance within each group, and then the in
vidual distances are combined to give the overall dista
between the EIH vector sequencesX andS. In the auditory
periphery, presumably, there is a continuum of overlapp
superbands covering the frequency spectrum. In our fu
tional model we replace this continuum by four nonoverla
ping superbands—roughly one octave wide. Each superb
consists of six ERB bins of the whole EIH vector.

In order to define a distance betweenX andS we first
time align the two sequences by warpingX ontoS. For this
we use the usual dynamic time warp~DTW! algorithm,

D2~S,X!5
1

N
min
k~n!

(
n51

N

d2~sn ,xk~n!!, ~1!

wherek(n) is the time warp@with k~1!51 andk(N)5K#,
andd is the Euclidean distance betweensn andxk(n) . Let x̃n ,
n51,2,...,N, be the EIH vectors ofX after this alignment.
We next define the distance between individual vectorsx̃n
and sn . Let sn

i and x̃n
i be the i th subvectors ofsn and x̃n ,

respectively, representing thei th superband.4 Let mn
i be a

636 matrix defined for thei th superband, for the time inde
n of the template sequenceS. Define ŝn

i and x̂n
i as the unit

length vectors

x̂n
i 5

mn
i x̃n

i

imn
i x̃n

i i
, ~2a!

ŝn
i 5

mn
i sn
i

imn
i sn
i i
, ~2b!

wherei•i denotes the Euclidean norm, or length, of a vect
We next define the distance between the subvectorsx̃n

i andsn
i

by the relation

d~sn
i ,x̃n

i !5i ŝn
i 2 x̂n

i i . ~3!

With this definition of distance between vectors, the dista
between the sequences within a superband,X i andSi is de-
fined as

D2~Si ,X i !5
1

N (
n51

N

gn
i d2~sn

i ,x̃n
i !. ~4!

Here,d2~sn
i ,x̃n

i ! is weighted by the factorgn
i depending upon

position along the template sequence.
In general, the distanceD between the EIH sequencesS

andX can be any function of theD2~Si ,X i!’s. For the present
we assume that they are linearly combined. Thus

D2~S,X!5(
i51

4

b iD2~Si ,X i !, ~5!

whereD2~Si ,X i! is as defined in Eq.~4!, and thebi are sub-
ject to the constraint(i51

4 b i51. Thebi ’s reflect the relative
importance of thei th superband, in the presence of norm
activity in all other superbands.~See Fig. 3.!
525 J. Acoust. Soc. Am., Vol. 101, No. 1, January 1997 O. G
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With vector distance defined as in Eqs.~2! and ~3!, the
matricesmn

i may be regarded as the submatrices of a 434
block diagonal matrixMn , in which each block has dimen
sion 636. The entries in the matricesMn , n51,2,...,N, are
part of the set of parameters to be determined by optim
tion as discussed in the next section. We have allowed
matricesMn here to depend arbitrarily on the time indexn of
the template. With this generality, however, the number
parameters to be optimized becomes too large. We there
restrictMn to two possibilities:Mn5MC if the indexn is in
the consonant portion of the template, andMn5MV if it is in
the vowel portion. If the matricesmn

i are chosen to be diag
onal, then they serve to specify the relative importance
different components of the EIH vector~or, essentially, dif-
ferent critical bands!. With a more general structure, they ca
capture the intuitive notion of ‘‘lateral interaction.’’ That is
the notion that the output of a channel might be influenc
by the activity in neighboring channels. In our study w
chose themn

i matrices to be tridiagonal.
The gn

i are introduced because we believe that the v
tors near the transition point are more important for rec
nizing the diphone than vectors further away from it. Wi
this in mind, we specify the functiongn

i with just two param-
eters,s i[(sC

i ,sV
i ). These are the variances of two Gauss

curves with peaks at the transition point—one for the con
nant part and one for the vowel part.~See Fig. 3.!

In principle, the set of parameters that define the d
tanceD in Eq. ~5! ~e.g., the matricesMC andMV and the
parameterssi andbi! should be allowed to be different fo
different diphones. This is again not feasible because of
number of parameters involved. Note that the total num
of diphones is on the order of 2000 in English. In the DR
database alone, the number of diphones is 192. Unique
trices for each diphone would require an enormous num
of parameters. We therefore restrict the number of para
eters by using the same sets for diphones with ‘‘simila
properties. At present we group together consonants
seven categories according tomanner of articulation~voiced
and unvoiced stop, voiced and unvoiced fricative, nas
glide, and affricate!. The vowels are grouped into four ca
egories according to the location of the constriction~low
back, high back, low front, and high front!. This gives us 28
classes of diphones, and we assign a parameter set to
such class.

In summary, the distance of a test segmentX from a
diphone templateS is derived as follows: Depending on th
templateS, choose the appropriate parameter setMC , MV ,
si , and bi . Then compute the distance according to E
~1!–~5!. For a given specification of all the parameters, t
definition ofD gives us a parametrized distance which d
pends on the template~or state!. The entire set of parameter
is optimized to best mimic human performance as descri
in the next section.

Finally, let us note that the parametrization describ
above is not necessarily optimal. Indeed we believe it can
improved in several ways. Allowing a greater range
choices for the matricesMC andMV as well as allowing the
submatricesmn

i to be full matrices~rather than tridiagonal!
525hitza and M. M. Sondhi: Distance between speech segments
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are obvious possible improvements in the definition of
vector distanced. A more promising improvement is a gen
eralization of the form of the segment distanceD in the
following manner: LetVs be the (24N)-dimensional vector
obtained by concatenating theN vectorssn in the template
sequence. Similarly letṼk

x be the test sequence after warpi
on to the template sequence with a mappingk[k(n). Then
we can define the distance betweenS andX to be given by

D2~S,X!5min
k

Vs8FṼk
x , ~6!

whereF is a positive definite matrix and8 denotes matrix
transpose. HereF can be regarded as a block matrix withN2

blocks, each block being a 24324 matrix. Then theD of Eq.
~5! is a special case of theD of Eq. ~6! in whichF is a block
diagonal matrix. With a full matrixF, we again have the
problem of a large number of parameters to be estimated
a first step, therefore, we might just generalize to a blo
tridiagonal matrix.

III. OPTIMIZATION

A schematic description of the optimization procedure
shown in Fig. 4. The right-hand side depicts the psyc
physical data collected in the tiling experiment. The le
hand side shows the outputs of the simulated tiling exp
ment. The parameters of the simulation are iterativ
adjusted to best mimic the psychophysical data.

Let u denote the parameter set which goes into the d
nition of D in Eq. ~5!, i.e., theMC’s, MV’s, si ’s andbi ’s.
These are the adjustable parameters. In addition we hav
template sequencesSj , j51,192—one for each initial di-
phone in the~undistorted! training database. These are ke
fixed throughout the optimization procedure. For a given
of values for the parametersu ~and the fixed templates! we
define a cost functionC which quantifies how badly the
simulation performs when compared to the psychophys
data. OnceC is defined, we use an optimization program

FIG. 4. A schematic diagram describing the optimization procedure.
parameters of the perceptual distance measure are iteratively adjust
match the error patterns produced by the machine to those of the hu
subjects, jointly over several tiling conditions. In the box marked ‘‘cog
tion,’’ the abbreviation 1I2AFC stands for the ‘‘one-interval two-alternati
forced-choice’’ paradigm.
526 J. Acoust. Soc. Am., Vol. 101, No. 1, January 1997 O. G
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iteratively adjust the parametersu in order to minimizeC.
The program we use is a variant of Newton’s method~Gay,
1983!.

To complete the description of our optimization proc
dure, let us now indicate the definition of the cost functionC.
The data we are attempting to mimic are the response
each of eight listeners to presentations of each of the wo
in the database spoken by each of three speakers, and
torted by each ofK tiling conditions.~As mentioned in Sec.
II, for optimization we chose only the distortions correspon
ing to the interchange of the entire diphone in band
band-2, and band-3, respectively. This givesK53.! To give
a concise definition forC it is convenient to define a set o
indices.

Let:
p denote the wordpair in the database~1<p<96!,
w denote theword within a pair~1<w<2!,
k denote the tiling condition (0<k<K), with 0 for the

undistorted database,
s denote thespeaker~1<s<3!,
l denote thel istener~1<l<8!.

Let xskpwdenote the speech signal corresponding to a cho
set of indices. Then the human response is a binary num
hl(xskpw), for each selection of the indicesl ,s,k,p,w in the
range given above for each index. That is,h is 0 if listenerl
identifiedxskpwcorrectly, and 1 otherwise. For a given set
parameters,u, letm~xskpw,u! denote the machine’s respons

With these definitions, the cost function that we min
mize is defined as5

C5(
s51

3

(
k50

K

(
p51

96

(
w51

2

(
l51

8

@hl~xskpw!2m~xskpw,u!#2.

~7!

The optimal solutionu* represents the parameters of t
perceptual distance which provide the best mimic, join
over all K tiling conditions. The accuracy ofu* depends
upon the amount of data used for the optimization. In o
database the number of tokens permanner class ranged be
tween 36 and 165; the number of tokens per vowel categ
was 144.

IV. RESULTS

In terms of evaluating the validity of our approach, tw
questions come to mind. First, how closely can the mach
error patterns be made to match human error patterns?
second, how does the performance of the ‘‘optima
metric—derived by optimizing on ‘‘tiling’’ type of
distortions—generalize to other kinds of distortions?

Figures 5~a!–~d! and 6~a!–~d! present results in an at
tempt to answer the first question. In all these figures
present error patterns by plotting the error rates for each
the Jakobson–Fant-Halle dimensions.6 For each of these di-
mensions we plot two error rates.7 At the abscissa marked
‘‘ 1’’ we plot the error rates for the subset of words in whic
the attribute is present, and at the abscissa marked ‘‘2’’ we
plot the error rates for the words in which the attribute
absent. In the top panel of every figure the error rates
human subjects~solid line! are compared to those for th
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machine~dashed line!. In the bottom panel the dashed line
shows the error rate for the machine minus the error rate
the human subjects. Also plotted for comparison are tw
solid lines representing6 one standard deviation of the erro
rate for human subjects.

We first tested if the model structure is flexible enoug
for the purpose of mimicking the human performance for o
tiling condition alone—say, the undistorted, original, DR

FIG. 5. Optimizing on undistorted database alone.Top panels:Mean human
~solid line! and machine~dashed line! performance on the DRT database
The mean human performance is derived across three speakers and
subjects. The abscissa of every plot indicates the six phonemic catego
‘‘ vc’’ is for voicing, ‘‘ ns’’ for nasality, ‘‘st’’ for sustention, ‘‘sb’’ for sibi-
lation, ‘‘gv’’ for graveness and ‘‘cm’’ for compactness’’. The ‘‘1’’ sign
stands for attribute present and the ‘‘2’’ sign for attribute absent. The or-
dinate represents the number of words in the category that, when playe
the listener, were judged to be the opposite word in the word pair~i.e., the
listener ‘‘switched’’ to the opposite category!. The switch is represented as
a percentage~relative to 16 which is the total number of words per phone
mic category!. Bottom panels:Difference between mean human perfor
mance and the machine performance~dashed line! compared to the human
standard deviation~solid lines!. The plots are for the original database~a!
and for the three tiled versions obtained by interchanging bands 1, 2, an
of the entire diphone@~b!, ~c!, and~d!, respectively#.
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database. For this test we optimized the parameters of
distance metric,u, on just the tiling condition 0. As it is seen
in Fig. 5~a!, the model can mimic the performance of th
human subjects quite well—the difference between mach
and human performance~bottom panel! is within one stan-
dard deviation for all the dimensions. However, this mod
~whose parameters were derived by optimizing on the und
torted database alone! fails to mimic human performance fo
other tiling conditions. Figure 5~b! and ~c! shows that the
machine makes significantly more errors than human s
jects for the tiling conditions in which band-1 or band-2
interchanged for the entire diphone. To arrive at a sin
model that is able to mimic human performance under d
ferent tile interchanges,u should bejointly optimized over
several tiling conditions.

In Fig. 6~a!–~d! we show the same comparisons as
Fig. 5~a!–~d!, except that now the parameters are optimiz
jointly over four tiling conditions: undistorted database a
the tilings in which bands 1, 2, 3, respectively, are inte

ight
es:

to

3

FIG. 6. Same format as in Fig. 5, but for joint optimization.
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changed over the entire target diphone. It is seen from F
6~a! that machine performance on the undistorted databas
slightly worse than that in Fig. 5~a!, and the machine perfor-
mance for sustention is more than a standard deviation aw
from human performance. However, in exchange for th
small deterioration, the performance for the other tiling co
ditions is now much closer to human.

As for the question of how the optimal metric genera
izes, we ran a simulated DRT experiment on the DRT da
base degraded by additive Gaussian white noise. We u
three different definitions ofd~•,•! ~a! the observation vec-
tors were 13th-order Mel-Cepstrum~MEL-CEP! andd was
the L2 ~i.e., Euclidean! distance;~b! the observation vectors
were EIH andd was theL2 distance; and~c! the observation
vectors were EIH and the distance metric was the optimiz
perceptual metric derived above. Table I shows the resu
for those three DRT simulations and for the human subjec
as a function of SNR. The entries are the errors, summ
over all the Jakobson–Fant–Halle dimensions, in perce
From Table I we conclude that although the machine perfo
mance using EIH with perceptual metric does not match h
man performance, it is superior to the performance usi
EIH with L2 metric ~and also to the performance withL2
norm between MEL-CEP vectors!. Figure 7 shows the de-

TABLE I. Experiment with the DRT database degraded by additive Gau
ian white noise. The entries are the errors, summed over all the Jakobs
Fant–Halle dimensions, in percent.

Clean 30 dB 20 dB 10 dB

Human 3 2 3 7
EIH ~perceptual! 5 8 13 24
EIH ~L2! 18 17 21 27
MEL-CEP ~L2! 11 16 25 38

FIG. 7. Mean human performance~solid line!, machine performance with
the perceptual distance~dashed line! and machine performance with 13th
order Mel-Cepstrum andL2 distance~dotted line! for the DRT database in
the presence of additive Gaussian white noise. The axes are as describ
Fig. 5, for various SNR.~a! Clean speech,~b! SNR530 dB, ~c! SNR520
dB, ~d! SNR510 dB.
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tailed distribution of these errors along the Jakobson–Fa
Halle dimensions. The detailed distributions are shown
the human subjects, the EIH with the perceptual distance
the MEL-CEP with theL2 distance. The results for the EIH
with L2 distance were omitted in order not to clutter th
figure. The figure demonstrates that the pattern of error
tribution for the perceptual distance generally follows t
pattern for human subjects.

V. DISCUSSION

In the preceding sections we have presented a me
for deriving a perception-based measure of distance betw
speech segments. The segments we chose to investigat
diphones, although longer segments could be studied
similar manner.

In our model, the template of a diphone is represented
a high-resolution sequence of EIH vectors~one vector every
10 ms!. This template represents the articulatory gest
while moving from C to V, in terms of the time course of th
EIH vectors. It may be thought of as the pattern of the
phone that is stored in memory during the early stages
language acquisition. Note that the template implicitly co
tains information about theplace of articulation of the con-
sonant. An unknown ‘‘input’’ diphone is compared to a tem
plate by first time warping it to the template and th
computing a distance between the aligned sequences.
distance is expressed in terms of a set of parametersu which
are allowed to depend upon the template. These param
quantify the perceptual deviation from the diphone templa
In order to keep the number of parameters manageable
group the consonants into seven groups and the vowels
four groups, and assign the same parameters to the co
nants and vowels within the same group. For consonants
postulate that the parameters depend upon themanner of
production~voiced and unvoiced stop, voiced and unvoic
fricative, nasal, glide, and affricate!. Thevowelsare grouped
according to the location of the constriction~front high, front
low, back high, back low!. In this way all C–V diphones are
grouped into 28 different classes. Note that this grouping
only for the parametersu ~that weight different time-
frequency regions according to their relative perceptual
portance!. The templates themselves are not grouped.8 Note
also that two diphones, say /ba/ and /da/, whose consonants
belong to the samemanner class are assigned the sameu.
The information about their different places of articulation
implicitly contained in the templates of the two diphones.

In deciding upon a structure for the distance we pos
late that the auditory periphery processes the input in para
frequency ‘‘superbands’’~about an octave wide! and pro-
duces a distance in each such band. In our functional mo
we take four contiguous superbands, although in the audi
periphery there is presumably a continuum of overlapp
bands. The distances from all superbands can be combin
many ways, providing the overall distance between the
phones. Here, we combine them linearly.

Throughout this study, we used the Jakobson–Fa
Halle feature space. These dimensions were used by Vo
to structure the DRT database, and we present our res
along the same dimensions. It is worth noting, however, t
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our aim is to derive a distance metric that is complet
independent of the distinctive feature set. For this reasonu *
was computed by optimizing the cost function defined in E
~7!. This cost function accumulates the contributions of
individual words in the database without regard to their d
tinctive features. However, the exact pairwise comparis
made will have some influence on the values of the optim
parameters.

The most important, and we believe novel, aspect of
work is the fact that we derive the distance measure on
basis ofperceptual dissimilarity. We do that by mimicking
human performance in the DRT framework, using tiling ty
of distortions. In this restricted task, at least, the metric p
forms significantly better than others that we have tried.

As a final note, we speculate that the perceptual dista
derived here may be used to define a jnd for diphones~or
phonemes!. This jnd may be defined as a change for whi
the perceptual distance attains a threshold value.
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1As mentioned above, psychophysical experiments dealing with speech
ception are rare. Some experiments reported in the literature that have
relevance to the present paper are those of Fletcher~1953!, Miller and
Nicely ~1955!, Houtgast and Steeneken~1985!, and Drullmanet al. ~1994!.
In Fletcher’s experiments~Fletcher, 1953! subjects had to respond t
stimuli that contained only parts of the speech signal~e.g., low-pass or
high-pass filtered speech!. Miller and Nicely ~1955! studied the effect of
filtering and additive noise on the confusion matrices for various phonem
The experiments of Houtgast and Steeneken~1985! and Drullmanet al.
~1994! are concerned with the effects of filtering the speech envelop
contiguous frequency bands. Our experiments differ from all these in
we study the effects of modifying selected time-frequency regions o
speech signal while leaving the rest of the signal unchanged.
2The six Jakobson–Fant–Halle dimensions arevoicing, nasality, sustention
sibilation, graveness, andcompactness. Thevoicing ~vc! feature character-
izes the nature of the source, being periodic or nonperiodic. Thenasality
~ns! feature indicates the existence of a parallel resonator representin
nasal cavity. The termssustention~st! andsibilation ~sb! are due to Voiers.
They correspond, respectively, to the continuant-interrupted and strid
mellow contrasts of Jakobsonet al. ~1952!. Finally graveness~gv! and
compactness~cm! represent broad resonance features of the speech so
related to place of articulation.
3We are assuming that the effects of coarticulation due to the initial co
nant do not extend beyond the midpoint of the vowel. This appears to b
accurate assumption, at least for the DRT database.
4Throughout the paper we used subscripts to indicate time index of a
plate, and superscripts to indicate superbands.
5If m in Eq. ~7! is chosen to be a binary number, like the human respon
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thenC would be a discontinuous function ofmwhich could be difficult to
optimize. We therefore makem(xskpw,u! a real number between 0 and 1
whose value depends upon the distances ofxskpw from the two templates
for the pair of wordsp. If dcor anddinc are the distances from the correct an
incorrect templates, respectively, then we choosem(xskpw,u!
5@11arctana(dinc2dcor!#/2. The exact value ofa is not very critical. The
important property is that ifdcor@dinc thenm goes to 0 and ifdcor!dinc then
it goes to 1.
6The errors could be presented in other ways, e.g., along place-manne
mensions, or in the form of a confusion matrix. Note, however, tha
confusion matrix format is inappropriate here because the psychophy
paradigm is a two-alternative forced-choice, and also because many b
comparisons are missing in the database. As to the choice of distin
features, we chose the Jakobson–Fant–Halle dimensions becaus~a!
Voiers’ DRT database is organized along those dimensions and,~b! be-
cause those dimensions reflect acoustic properties in time and frequ
~Jakobsonet al. 1952!.
7Note that here, we use the notion of ‘‘error rate’’ in the context of DR
i.e., a binary decision paradigm: an occurrence of an error means tha
listener ‘‘switched’’ to the opposite category.
8It may be argued that the articulatory gestures are quite similar for C
diphones in which the vowel is the same and the place of articulation of
consonant is the same—e.g., /ma/ and /ba/. However, the corresponding
spectra and EIH vectors are still quite distinct. Hence grouping of
templates themselves is not justified.
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